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Abstract 

The effect of nonlinear terms in the Dirac equation is investigated, in the case of the 
hydrogen atom. It is found that the change in the energy is of order c~ 6 for a very large 
range of values of the coupling constant of the dominant term. It is shown that a non- 
linear classical field theory has a quantumlike behavior near the linear limit. This implies 
the existence of a close relation between linearization and quantization. A classical stable 
model of the hydrogen atom is presented. Some consequences are discussed. 

1. Introduction 

We could define elementary physics as the physics of  linear phenomena. 
The pendulum, an elastic rod, any optical system, etc., are first studied as 
linear systems, described by  linear differential equations. But when more 
precision is necessary, the effect o f  nonlinear terms in the  equations must be 
considered. This usually happens when the physical magnitudes of  the problem 
turn out  to be very big or when the experimental  errors are very small.. 

Tiffs transit ion from a linear, approximate t heo ry  to a nonlinear,  more 
exact one is general in physics. There is, however, a very important  exception 
to this rule: quantum mechanics. The reason is, o f  course, that  physicists are 
used to thinking that in order to go beyond quantum mechanics it is bet ter  to 
construct a completely new formalism, the second quantization.  No doubt ,  
quantum field theory  makes use o f  nonlinear equations. But in general the 
nonlinearity is due to the interactions and, at least in the simplest theories, 
does not  appear in the case of  free particles. 

It is surprising that  no more at tention has been paid to the development of  
a nonlinear quantum mechanics without  second quantization.  In such a theory 
the classical solution of  the field equa t ions -and ,  in fact, the classical theory  
of  f ie lds-would  play a very important  role concerning the transit from 
quantum mechanics to elementary particle physics. It is usually assumed that  
the typical  discontinuous phenomena o f  the atomic world are inaccessible to 
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a classical theory. However, the oldest known quantum phenomena, such as 
the quantization of energy, have a classical analogy in the case of  the frequencies 
of vibration and they appear in nonlinear classical field theory. On the other 
hand, the very rich and almost unknown world of  the stability of the solutions 
of nonlinear partial differential equations offers a very suggestive formalism 
for the study of quantum jumps. It is evident that this point of  view does not 
have much chance of being easily accepted among high-energy physicists. 
Nevertheless, its degree of  credibility should have increased considerably after 
one of  the most fascinating discoveries in many years of mathematical physics: 
the soliton. 

As is well known, a soliton is a localized, traveling wave that preserves its 
shape upon collision with other analogous waves. For a general review we refer 
to Whitham (1974) and Scott et al. (1973), where its applications to many 
branches of  physics are studied, together with a description of the empirical 
discovery of the soliton in 1831. Of course, solitons only appear in nonlinear 
equations. Given a localized, traveling wave (also called solitary wave or kink) 
it is difficult to know if it is a soliton, that is, if it is able to reconstruct itself 
after collisions. In one dimension the problem can be solved in some cases by 
means of the inverse scattering method (Whitham, 1974; Gardner et al., 1967). 
However, in three dimensions the problem is very difficult in spite of some 
important recent results (Zakharov and Kuznetsov, 1974). 

The great stability of the soliton makes it an ideal tool for representing 
elementary particles. The preservation of shape after collisions could be used 
to explain elastic scattering, while in inelastic processes the interaction terms, 
acting as sources, would produce new solitons. 

We may quote some interesting proposals in this connection, such as those 
of Skyrme (1961a,b) and Caudrey et al. (1975), which are not, however, 
realistic because they use one-dimensional fields. On the other hand, there 
are more realistic three-dimensional models with scalar (Anderson and Derrick, 
1970) and Dirac fields (Finkelstein et al., 1951, 1955; Soler, 1970, 1973; 
Ramada and Soler, 1973) It has even been possible to construct classical models 
of nucleons, as the kinks or solitary waves of nonlinear Dirac fields (Ramada 
et al., 1974) or of a system of nonlinear Dirac and pseudoscalar fields in 
interaction (Rafiada and Vazquez, 1976). However, it is not known if the 
solutions that these models use are solitons or merely solitary waves, although 
they are stable, as has been shown by Soler (1975). 

A great effort is presently being made in the quantization of nonlinear 
field theories (Coleman, 1975; Christ and Lee, 1975). Although this line of 
work causes at this moment great excitement, we take a different approach and 
concentrate on the effect of  nonlinear terms at the classical level, that is, 
without second quantization. 

On the other hand, there are very powerful dynamical reasons that demand 
the existence of nonlinear terms in the field equations. Weyl (t950) showed 
that if the gravitation is introduced in the so-called "mixed" way, by consider- 
ing the metric and the affine connection as independent quantities, the spinor 
fields must obey either linear equations in a space with torsion or nonlinear 
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equations in a Riemann space. The apphcation of Weyl's idea to a simple model 
of the universe leads preciselyto the nonhnear Soler model (Soler, 1970a; 
RaBada and Soler, 1972). 

All these considerations point to the necessity of  somehow including non- 
linear terms in the free field equations. These terms should appear some way 
at the level of  quantum mechanics. But quantum mechanics is a hnear theory 
that has reached a tremendous success in the prediction of  experimental data 
in the physics of  the so-called quantum world. A very interesting problem 
arises: Is it possible to introduce nonlinearities without spoiling the very 
beautiful features of quantum mechanics? 

A first hint to the answer might be found in the fact that quantum mechanics 
describes the particles better, when the extension of the wave function is much 
bigger than the Compton wavelength (e.g., the hydrogen atom) than when the 
situation is the opposite one (e.g., the free electron). It is clear that in the first 
case the field must be weak and the linear approximation can be adequate, 
while we cannot expect the same thing in the second one. Moreover, if the 
potential is very strong, as in the case of the Coulomb field of a nucleus, its 
effect must dominate over that of the nonlinear terms, which on the other 
hand would be dominant in a free particle (Soler, 1970b). Another argument 
that should be considered is that only a nonhnear theory can avoid the annoy- 
ing broadening of any wave packet. It is therefore convenient to study the 
possibility of  a nonhnear quantum mechanics. 

In the present work, we study in a quantitative way all these qualitative 
considerations, in the case of  the Dirac equation in the hydrogen atom. More 
precisely, we take the following nontrivial problems: Is relativistic quantum 
mechanics of  the hydrogen atom the ;inear hmit of  a nonhnear theory? Is it 
possible to detect experimentally the hypothetical nonlinear terms? As we wilt 
see the answer is that for a very broad range of  values of  X, the coefficient o f  
the dominant term ( ~ ) 2 ,  the nonhnear effects are of order ~6 and cannot be 
detected experimentally. 

In Section 2 we study the linearization of a general nonlinear theory in the 
hydrogen atom. We show that the introduction of an action constant is a 
necessary condition to hnearize properly a classical field theory. The equations 
of the first nonlinear approximation are solved numerically and the results are 
explained in Section 3. In Section 4 we interpret and comment on these results. 
In Section 5 we propose a classical nonlinear model of  the atom, and finally in 
Section 6 we summarize the problem and state the conclusions. 

2. The Linearization Problem 

We take the following problem: Is it possible to represent the electron in a 
hydrogen atom by a nonhnear Dirac field, in such a way that the theory co- 
incides with quantum mechanics, at least within the limits of  experimental 
errors? To be precise the last sentefice will be understood to mean up to c~ 4 
order, a being the fine-structure constant. 

At first thought, the problem may seem to be trivial, the answer being 
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affirmative. In fact, in the hydrogen atom the electron is very extended and 
its field must be very weak. Moreover, the Coulomb potential is very intense 
near the nucleus, where the nonlinear terms are expected to be more impor- 
tant. This seems to suggest that the potential must dominate over the self- 
coupling and that the linear approximation may be adequate. The problem is 
not, however, as simple as that. The preceding arguments do not consider two 
very important aspects of  the question: The norm of  the solutions and the 
determination of the frequency and the energy. 

In quantum mechanics the norm of a solution is not determined by the 
equation but the wave function is normalized to unity once it is obtained. In 
a nonlinear theory there is no such freedom because the norm is imposed by 
the equation. As a consequence a nonlinear theory can linearize to quantum 
mechanics only if for all the sets of  quantum numbers (n, f, l, m) there exist 
solutions such that 

1/t~nl]rnll = f [ ~nl]ml 2d3r (2.1) 

has the same value, independently of  (n,/ ',/, m). Of course, one cannot know 
a priori if this is the case. 

The frequency is fixed in quantum mechanics by the requirement that the 
wave function be well behaved both at the origin and at infinity (Aktfiezer and 
Berestetskii, 1965). However, the same argument does not apply in nonlinear 
theory because the square integrable solutions behave as the linear wave func- 
tions for r -+ oo but not for r -+ 0. The method used in quantum mechanics to 
determine oo is not, therefore, valid in nonlinear theory. Let us take a second 
look into these two problems. 

We consider the class of nonlinear equations with the Dirac equation as 
linear part and with a nonlinear part that can be developed in a series ofbi-  
linear covariants. Being interested in the weak-field limit, we keep only up to 
fourth order in the I_agrangian; that is, we take 

L = L L + LNL (2.2) 

where 

L L = ½(~3,U3~ ~ -- (~#t})"/u~) -- m~t~ -- e~7 ° ~Ao (2.3) 

Ao is the electrostatic potential of the nucleus and LNL is the most general 
combination of fourth order, that is, constructed with the bilinears S, V, T, A, 
P (Finkelstein et al., 1956). 

5 
LNL = ~ Ca(~f (~) ~) (~iP(~)~) (2.4) 

a=l 

where F( 9 are the matrices of  the Clifford algebra generated by {@}. The four 
spinors in (2.4) being the same, one has 

S + T - P = O  

V -  A = 0 (2.5) 

S - A + P = O  
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and LNL can be written in the form 

LNL = k[ (~¢)  2 + b(~Ts~) 2] (2.6) 

This means that the most general fourth-order self-interaction is a combination 
of scalar (~)~)2 and pseudoscalar (~Ts~) 2 couplings. 

In order to solve classically the field equations, we must factorize the 
solutions in spherical coordinates. This is only possible if b = 0 and ] = 1/2 
simultaneously. When this is not the case we have to make a multipole expan- 
sion and write down equations for each partial wave. It is, however, much 
simpler to substitute a multipole approximation in the Lagrangian, integrate 
over the angles, and make variations of the radial functions. This procedure 
gives a low-order variational approximation to a solution. We will take spinors 
of the form 

t~ti, (r-) = e-iWt (2.7) 
• ./a 

\ i:( r)~/) C 

where@':~ are the spinor spherical harmonics and l' depends on I, j in the usual 
way. 

Substitution of (2.7) in (2.2) and integration over the angles results in 

Lz = g f  _fg, 2Kg_f+(w _eAo)(g2 +re)  _rn(g2 _f2) r2dr 
r 

~ [ _ 4bCz(k)g2f 2 ] (2.8) LNL = ~.f Cl(k)(g2 _f2)2 rZdr 
o 

where K is the eigenvalue of/3. ( E .  L .  + 1) and 

Cl(k)= f ~ IKI--I v4nl-- 114dg2, C2(k)=f[YI~I_I[tKt-1 4 cos20dg2 (2.9) 

It is convenient to make the following change of variables and parameters: 

[ m m 
(g ' : )  = 2 lXlCl(k) (G, F), Ao = -  V 

e (2.10) 

p = mr, A = oo/m 
which leads to 

1 
L -  

2 IXlm2CKk) 

- +(A - V)(G 2 +F 2) - (G 2 - F  2) p2dp 
P 0 

C1 } 
+½sgX f (G2-F~2p2dp-2bsg3.-~2 fG2F2p2dp (2.11) 

0 
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As we see, [Xl and m are scale parameters. Being near the linear limit, G and 
F turn out to be large and small components as in linear quantum mechanics. 
For this reason the pseud0scalar term is negligible as compared with the 
scalar one, if b is o f  the order o f  unity. For instance the difference in the 
energy between b = 0 and b = - 1  (corresponding to scalar and pseudovectorial 
self-couplings) is only o f  order off. From now on we will take b = 0. In other 
words the linear limit is dominated by the (t} 4) 2 term. 

In (2.11) we vary the radial functions and obtain 

(1 
F '  + - K) F - (1 - A + V)G - sgX(F 2 - G2)G = 0 

p (2.12) 

G~ +{1 +•) G - (1 + A  - V)F- sgX(F z - G~)F= 0 
P 

These equations are exact if I~ [ = 1, that is in $1/2 and Px/2 waves. In the 
other cases they must be understood as lowest wave approximations. If we 
take for V(#) a purely Coulomb field there are no square integrable solutions 
i f ]  = 1/2. The reason is that the nonlinear term amplifies the singularity that 
the ] = 1/2 wave functions have at P = 0. This problem does not arise i f j  > 1/2. 
Fortunately the electrostatic potential is not purely Coulombic because o f  the 
finite size o f  the proton. We have taken 

[i- p~ P > R° 

, p < R o  

which is the potential produced by  a sphere o f  radius R o with uniform 
charge density. The mean square radius is (p2)X/2 = (3/5)1/2Ro. 

The energy comes out  from the energy momentum tensor 

T ~ = 2[~Vc~OP~ - (D¢~)')'a 4]  + g ~ P X ( ~ )  2 (2. t4)  

where we have used the equation 

L = - X ( ~ )  2 (2.15) 

which is valid for the solutions of  the field equations. The effect o f  the inter- 
action does not appear explicitly but is included in (2.14) and (2.15). One has 

E= fT°°d3r = cof ~+t)d3r + X f (~J¢)2d3r (2.16) 

where the linear and nonlinear components o f  the energy appear clearly 
separated. 

The norm of the solutions is 

N = [1 ~ 11 = f ~ + ~dar (2.17) 

In linear theory it is usually stated that N is set equal to unity by means o f  a 
normalization factor. This is not  completely correct because N has dimensions 
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of action. To normalize to unity is in fact to normalize to the Planck constant 
-ft. In a nonlinear theory N is a function of  X and m. More precisely, (2.16) and 
(2.17) can be written (we take]  = 1/2, for which C1 = 1/4rr) as 

2~r A + 1 sg~,I2) (2.16') 

2g 
N =  i X - ~ I 1  (2.17') 

where 

= f ( G2 + F2)p2dp I1 

o ( 2 . t 8 )  
o o  

I 2 = f ( G2 -- F2)2p2dp 

0 
I1 and 12 depend on A but not on IX [ or m. It turns out that F, G are very 
small so that I z ~ I1. For instance in the ground state we will find that 
I2 / I  1 < 10 -11 in the case of  the relevant solutions. 

From (2.16') and (2.17') it follows then 

E = AmN = N w  (2.19) 

As we have explained before, a necessary condition for a theory to linearize to 
quantum mechanics is that the norm of  the different states be the same. In 
that case (2.19) shows that N plays the role o f  quantum of  action and must be 
equal to-B, the Plan& constant. In nonlinear field theory the Planck constant 
can thus be interpreted as the norm of  the electron field. If  we take the linear 
approximation we can no longer calculate the value of  this norm, and it must 
be introduced as a fundamental constant in order to overcome the insufficiency 
of  the theory. A close relation appears thus between quantization and lineari- 
zation: From the point o f  view Of nonlinear classical field theory, an action 
constant must be introduced in order to assure the correctness o f  the lineariza- 
tion. In other words, quantization is a necessary condition to lineafization. As 
we will see, the fact that Nhas  to take the same value for all the different 
states does not present any problem. 

Let us now consider the second problem: the determination of  A = co/m. 
In linear theory the solutions are Of the form 

rg = (1 + A ) l / Z e - a r ( F  1 +/72) 

r f  = (1 - A)l/2e -°~ (F  1 - F2) (2.20) 

o = ( m 2  _ ~ 2 ) ~ / 2  

where 

")" - -  Ol(.O/O 7 . . "  
F 1 = e ~ ~ z lvJL3' + 1 - a w / a ;  27 + 1 ; z) 

F 2 = cz~'M(3 , - acolo; 27 + 1 ; z) 
(2.21) 
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where c is a constant, 3' = (K 2 _ a2) 1/2 z = 2or, and M is the Kummer function. 
In order that FI  and F 2 do not blow up at infinity, A must take some precise 
values. This argument does not apply in nonlinear theory because we only 
need solution o f  the linear equation well behaved at infinity. The reason is 
that near the origin the linear and nonlinear solutions do not  have the same 
behavior. In fact for any A we have the asymptotic solution 

F1 = czar (3' - ao0/a)(-3 '  - aco/a) U(3' + 1 - aoo/a; 27 + 1 ; z) 

-• + ma/o (2.22) 

F 2 = effU(3" - aoo/a; 23' + 1; z) 

where U(a;b;z) is defined as (Abramowitz and Stegun, 1972) 

[ M(a;b;z) z l_bM( t  + a - b ; 2 z b ; z ) ]  
U ( a ; b ; z )  = - -  

sinTrb r ( l  + a - b ) r ( b )  r ( a ) r ( 2  - h )  ] 

(2.23) 

When A = co/m takes any of  the values that the linear theory predicts, (2.22) 
and (2.21) are proportional. Uis divergent at p = 0 but is well behaved at 
infinity: 

U(a; b; z) =z-a[1 + O([z[ - ' ) ]  

Izl + ~  

We cannot thus exclude any value o f  A. In fact we have found a continuous 
family of  solutions. The frequency seems thus undetermined. 

In order to understand our problem more clearly, let us consider a process 
that presents a close analogy with it: the buckling of  a rod submitted to axial 
stress (Reiss, 1969). Let the rod be placed along the x axis with its ends at 
x = 0 and x = 1. Under axial stress, the endpoints suffer a displacement c. 
According to the linear theory o f  elasticity, the rod buckles only if c takes one 
o f  the critical values Cn =/3(nrr)2/2, t3 being a physical constant. In that case 
the shape o f  the rod is given by  

wn(x) =An sin nrrx 

with an undetermined amplitude An. When nonlinear terms are introduced, it 
turns out that c is not restricted to the critical values but the rod can buckle 
into the shape sin nrrx if c >~ On, the amplitude being given by  

c = cn(1 +An2/4{3) 

The situation is analogous in our case. The linear theory fixes oo but not the 
norm, while the nonlinear theory allows a continuum o f  values o f  co but deter- 
mines the norm as a function o f  o0. By the way, the preceding example presents 
the existence of  an infinity of  unstable classical states with increasing energies: 
the buckled states with n = 1 ,2 ,  3 . . .  n . . . .  The rod can make classical 
transitions to the state o f  minimum energy, with an evident quantum aspect. 
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To sum up we need to know the following: 
(i) Are the nonlinear solutions also approximate linear solutions, and, if so, 

with what degree of approximation? 
(ii) Which are the allowed frequencies in a nonlinear theory? 
(iii) Which are the norms of the nonlinear solutions? More precisely: is 

there a complete set of  solutions, all of which have the same norm? 
We have not been able to answer these questions analytically. We have thus 

solved the problems by performing a numerical analysis of  the equations. 

3. Numerical Results 

We have solved equation (2.12) with the potential given by (2.13) in the 
waves 1S1/2; 2S1/2; 2P1/2; 3Sx/2; 3Pin. The reason for limiting our work to 
the case] = I/2 is that, i f ]  = 1/2, (2.12) being only the lowest wave approxi- 
mation, several multipotes must be considered, making the calculation much 
longer. Nonetheless the pattern of  our results seems to be general. In order to 
solve the equation we have proceeded as follows. 

First of  all we fixed the values of  the parameters A and Ro. In the case o r S  
waves the function F must vanish at p = 0 and the only initial condition is 
G(0). It turns out that there are two kinds of  solutions: If  G(0) is bigger than 
a certain value Go, the behavior when p -+ ~, is G -> - ~ ,  F-+  + ~,, while if 
G(0) < Go it is G -+ + ~,  F->  - ~. This value can be considered as corres- 
ponding to a square integrable solution. Of course, it cannot be determined 
exactly, but we can approach it as much as we want. The more we approach it, 
the farther the tendency of G, F to diverge appears. In practice it is better to 
calculate G/Gt; F/Ft, where GI, Ft are well-known linear solutions, normalized 
such that 

f (Gt + F12)p2dp = 1 
0 

That calculation shows that G/Gt, F/Ft approach the same constant C, over 
an increasing interval when G(0) -+ Go. For instance when G o is determined 
with three significant figures these quotients are constant up to six figures 
from below r = 0.004 A, to over r = 8 A, and this result can be improved very 
easily. In other words, the nonlinear solutions are very approximately pro- 
portionat to the linear ones. Of course, we should keep in mind that when co 
does not take a linear value G and Gt correspond to different frequencies. The 
preceding statement applies when the difference between co and a linear value 
col is not big (smaller than 1 0 3 a  6 , for instance). However, we will be mainly 
interested in such cases and there'fore the quotients GIG t and F/Fl are very 
useful in the numerical process. 

For P waves the only difference is that G(0) = 0 and we have to determine 
F(0). The method is very similar to the one used by Finkelstein et al. ( t951) 
and Soler (1970a), and it appears plotted in Figure 1. 

Concerning the value of the parameters R o and A we proceeded as follows. 
Ro measures the size of the nucleus. We have studied the interval between 
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1 r(~) 
? Figure 1. G/Gl versus r for several solut ions in the  1S1/2 wave. 

RQ = 0.0022 and R o = 0.0032 which correspond to (r2)~/2 = 0.65 fermi and 
(r~) 1/2 = 0.95 fermi, (r2)lp/2 being the mean square charge radius o f  the proton. 
The experimental value falls inside this interval, and in this way we have deter- 
mined the sensitivity o f  our results to small variations of  Ro. As we showed 
before, there are no special values for A. The calculation proves that there is a 
family o f  solutions corresponding to a continuum o f  A. It is convenient to 
write 

27re 2 
A = AI + - - ~ -  Ro21~(0)l 2 +A~  6 (3.1) 

The first term is the linear eigenvalue for a Coulomb field as given by the fine- 
structure formula. The second one is the correction due to the finite size of  
the nucleus, calculated in lowest-order perturbation theory, ¢ being the 
Schr6dinger wave function. It is o f  order a4(mR 0) 2 or equivalently o f  ~6 order. 
The third term measures the difference between the linear and the nonlinear 
ei~genvalues. We take this form because our computer does not appreciate the 
a° terms.  According to the theory o f  nonlinear partial differential equations 
the nonlinear solutions must bifurcate from the zero solution at a linear eigen- 
value, that is at A = 0, in complete agreement with our results. 

For every couple o f  values of  R and A we have found one o f  C = GIG l = 
F/I,). The results show that (i) there are no square integrable solutions if 
sgA = sgX; (ii) when sgA = -sgX there is a solutio~ for any value o f  A,  at least 
least in the interval 10-4 < [A[ < 101°. The relation C = const, x [A[ 1/2 holds 
at least with four significant figures; (iii) when A -+ - A  and X -+ -X,  C does 
not change at least in the first four significant figures. 

The results are plotted in Figure 2. Owing to the C - A relation, quoted 
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Ilog.Icl 
Figure 2. Log I C I versus log IA I for the waves with n = 1, 2, 3 and ] = 1/2. 
Curves corresponding to the same n and f coincide. 

above, log [CI is a linear function of  log IA I. The results do not depend on R,  
which appears in the problem only through the second term of  (3.1). It is 
clear that when A -+ 0, or equivalently, the nonlinear eigenvalue tends to the 
linear one, the nonlinear solution tends to zero. In other words the linear 
eigenvalue is a bifurcation point. 

Now we turn to the energy and the norm. Because o f  the normalization of  
Gt, Ft, I1 = C 2. We have thus, from (2.16') and (2.17'), 

IX line = 2zr(AC 2 + ½sgXh) (3.2) 

[X [m2N = 2~rC 2 (3.3) 

Since Cis function of  A, (3.2) and (3.3) state that the energy and the norm 
depend on A. That is 

E = E(A) = E(A) N = N(A) = N(A) 

We have stated that 12 < I 1 .  This is clearly understood from the preceding 
results and from Figure 2. For instance, in the iS  wave if JAJ = 0.t  one has 
I2/I1 "~ 10 -14 and if ]AJ = lOOIJI1 ~ 1.2 x 10 -11. 

After equation (2.11) we have taken b = 0 because we expected the effect 
of  the pseudoscalar term to be negligible. In order to test this approximation, 
we have repeated some of  the calculations with b = - 1 ,  which corresponds to 
a pseudovector self-interaction. In fact, this is the type o f  self-coupling that 
follows directly from Weyl's idea (Weyl, 1950). The change affects C in the 
fifth significant figure. This means that the energy is affected on the order o f  
0:8 . 

4. Interpretation o f  the Results 

In each of  the five waves that we have considered, we found a family of  
solutions depending continuously on A = ~o/m. In the work of  Soler (1970a, 
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1973) the situation is analogous and the arbitrariness of  the frequency is solved 
by a principle of minimum energy, which states that the physical frequencies 
correspond to minima of the curve E = E(A). However, in our case these curves 
have no minimum, as one can see very easily from (3.2) and Figure 2. In fact, 
the energy is very closely proportional to C 2, which decreases to zero when 
IA f -~ 0. Nonetheless, this does not imply that the energy is not fixed by the 
theory. In order to understand better the problem, let us consider the process 
of formation of a hydrogen atom. A free electron is bound by a proton in a 
state labeled by the quantum numbers (n, j, l, Jz). If the initial value of  A does 
not correspond to a minimum of E(A) it will try to radiate energy until a 
minimum is reached. But, as we know, there are no minima in our case. We 
could be tempted to deduce that the energy must decrease until C-~ 0, when 
IAI -+ 0 and that the fields F, G, must vanish in this limit. The process would 
be very similar to the shrinking of  the classical atom with a point electron. 
However, this process would violate the conservation of  the norm N or the 
charge q = eN. If we restrict ourselves to stationary solutions, when the atom 
is formed the value of A must take a value such that the norm of the solution 
is equal to the norm of the free electron, which plays the rote of an action 
constant. The energy wilt thus be well defined and will be 

E=No~ 

even if E(A) has no minimum. Of course in this formula we have neglected tile 
unobservable effect of I2. 

This suggests an interesting possibility: the determination of the action 
quantum as a nonfundamental constant, through the classical solution of  the 
free-electron equations. It would be equal to the norm of the kinks or solitons 
representing the free electron in a nonlinear theory. Of course the value of 
this norm would play the role of action constant only in the case of  the 
hydrogen atom, or perhaps, in the more general case of the Dirac field. We do 
not claim that this work implies that it is a universal constant, as happens in 
quantum mechanics. From the point of view of classical nonlinear theory the 
problem is as interesting as difficult. 

From (3.3) we deduce (in natural units from now on) 

IXlm 2 
C 2 _ (4.1) 

27r 

Since Cis function of IAI, (4.1) establishes a function 

IA[ = F(IX lm 2) 

which appears plotted in Figure 3. Given a value of X, A is determined and, 
therefore, also A and E. In Figure 3 we use log IAI and log(tMm 2) because 
there is a simple relation between these quantities. 

The curves corresponding to + IX] and - IXl are very close, the difference 
bein~g too small to appear in the drawing. As we see if IXl m 2 < 1 0  - 4  A - -  A l < 
10a ° in all the waves. As the experimentally significant part of the fine 
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Figure 3. Log [A [ versus log ( [k [m 2) for the waves with n = 1, 2, 3, and 
j = 1/2. Cmves corresponding to the same n andj coincide. 

structure formula contains only up to a 4 terms, the differences in energy 
introduced by  the self-coupling are not observable. For comparison, let us 
recall that  the Fermi constant G is Grn 2 ~ 10 -11. We can also point  out  that  
two models o f  the nucleon have been proposed, considering nonfinear Dirac 
fields with Ikirn ~ ~ 10 -7 (Rafiada et al., 1974; Rafiada and Vazquez, 1976). 
Then a model  o f  the electron with the same self-coupfing constant is conceivable. 

A final comment is due concerning the precision o f  our numerical  calculations. 
The values of  G(O), C, the integrals, etc.,  are calculated with errors smaller than 
0.1%. This is enough because a reduction o f  the error would only amount  to a 
variation o f  less than 0.1% in the nonobservable value o f  A. 

5. Classical Model o f  the Hydrogen A tom 

The preceding results can be used to construct a classical model  of  the 
hydrogen atom. In it each state is given b y  a solution of  a nonlinear field 
equation. We have only calculated five waves, but  it seems reasonable to expect 
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that the pattern of  results can be extended to all the spectrum. Given a value 
of X, in a very large interval, the nonlinear and linear solutions differ very little, 
in a 6 order, when the latter are normalized to 7~. The energy differences between 
both theories are smaller than the experimental errors. 

Several kinds of objections can be presented to this model, for instance the 
following. 

(i) This model is very similar to quantum mechanics. In fact, in the hydrogen 
atom the choice between linear and nonlinear theory is just a question of  
personal taste. The linear theory is much simpler and, therefore, much better. 

(ii) Contrary to classical models, based on point electrons, this one is too 
stable because the electromagnetic current 

i ~ = e ¢ @ ¢  

is time independent. No spontaneous radiation is predicted, in clear disagree- 
ment with experiments. 

(iii) This model implies that the free electron must be an extended particle 
because it would be represented by the kinks or solitons of nonlinear Dirac 
and electromagnetic fields in interaction. However, it is usually stated that the 
electron has no structure. 

(iv) A classical theory of the Dirac field cannot account for the Pauli 
exclusion principle. 

Concerning the first objection, it must be stressed that the nonlinear classi- 
cal theory can be reduced to a linear theory plus an action constant only in 
certain cases, as in the hydrogen atom. In these cases the linear theory is much 
simpler and the nonlinear one has no advantage. However, for free particles 
the predictions of  linear and nonlinear theories are completely different. For 
instance, if we take the free solutions of  the theory given by the Lagrangian 
(2.8) (with A o = 0) we obtain the Soler model, in which the particle has di- 
mensions of order 1/m ~ 400f= 4 x 10 .3 A. However, the linear theory has 
no stable, localized solitary waves. Of course, if the particle is very localized, 
it is necessary to take into account its own electromagnetic field which can 
play a fundamental role. Another important difference arises in the study of 
transitions. This brings about the second objection. First, let us remark that 
quantum mechanics predicts, in its simplest form, that the states are completely 
stable. In order to study the problem more deeply, we must consider the theory 
of stability of  solutions of  nonlinear, partial differential equations. I f  our 
solutions are not stable, the small perturbations produced by neighboring atoms, 
background radiation, etc., could induce transitions. I f  this is the case, an iso- 
lated atom would be stable, while one that is near matter would not. The 
problem is very difficult because the theory of  stability in the case of  partial 
differential equations is just beginning to develop. An interesting approach to 
the problem is proposed by Anderson and Derrick (1970) and Anderson (1971) 
in the case of  the nonlinear scalar field. The transitions would be analogous to 
those that occur between buckled states of  a rod (Reiss, 1969) or between 
different states of an anharmonic oscillator (Landau and Lifshitz, 1958). We 
cannot state that quantum transitions follow such a mechanism. However, the 
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present knowledge of the stability of  partial differential equations does not 
seem sufficient to exclude this possibility. 

Let us now take the third objection. The statement that the electron has 
no structure must be understood as meaning that its size is too small to be 
appreciated in present-day experiments. It is necessary to know if there are 
very localized sohtons in the interaction of nonlinear Dirac and electromagnetic 
fields. The limit situation in which the spinor self-coupling is completely 
dominated by the electromagnetic coupling corresponds to the case studied 
by Wakan0 (1966), who found that there are no solitary waves. The opposite 
situation, in which the electromagnetic interaction is small and can be treated 
as a perturbation of the self-coupling, was studied by Soler (1973), Ramada 
and Soler (1973), Ra~ada et al. (1974), and Rafiada and Vazquez (1976). 
The existence of solitary waves was proved, which were shown to be adequate 
to represent nucleons but not electrons. The intermediate case, in which both 
effects are comparable, is not known. We are presently working on this interest- 
ing problem. If these hypothetical, very localized spinorial, solitons do exist a 
classical model of  the electron could be attempted. The predictions of  this 
model concerning the hydrogen atom would be equal to those of quantum 
mechanics, up to a 4 order. Nevertheless, the interpretation of the field ~ would 
be different from that of  the orthodox Copenhagen point of view. The electron 
would be an extended particle, whose size could change drastically, according 
to the different conditions to which it can be submitted. As was stressed before, 
the same Lagrangian predicts very different solutions, with very different radii, 
if the particle is free or ff it is bound to a Coulomb field. The solutions studied 
in this work are, in fact, solitary bounded waves. The whole kink must be 
taken to represent the electron. In a Coulomb field the kink has a radius of 
order 1 A, and this must be considered as the radius of  the electron itself in 
this situation. 

If  the electron is free, its nonlinear self-coupling, together with its electro- 
magnetic self-interaction would change its localization, reducing tremendously 
its size to less than 0.1 fermi. It must be stressed again that this reduction 
takes place, in a smaller scale (from 5 x 104 fermi to 400 fermi), if one neglects 
the electromagnetic field of  ft. It is worthwhile studying whether this field 
makes the reduction much more dramatic. 

As for the fourth objection, it is a difficult question, it is not the same 
thing to consider a classical field extending to a macroscopical domain as it is 
to consider another one in which the localization is microscopic. In the latter 
case the nonlinear effects may play a significant role, which may affect the 
usual arguments on this question. 

6. Summary and Conclusions 

We have found that the inclusion of nonlinear terms in the hydrogen atom 
modifies the results in order a 6, which cannot be experimentally detected. For 
completeness, we should also consider the radiative corrections. As is well 
known, one of the most successful predictions of  quantum mechanics refers 
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to the Lamb effect. It is related to the electromagnetic field produced by the 
electron field. From the point of view of nonlinear theory, this effect can be 
neglected, in the first approximation, because the great extension of the 
field makes the current density very small. It is worthwhile to study this problem 
in a future work. 

In the case of  the relativistic hydrogen atom, quantum mechanics appears 
as the linear approximation to a nonlinear classical field theory. If this situation 
is general there is a kind of three-step hierarchy: nonlinear classical field theory 
reduces, by linear approximation, to quantum physics, whose reduction to 
classical mechanics through the Ehrenfest theorem is well known. 

One of the main problems of  quantum physics is the appearence of diver- 
gences. In particular the selfenergy of a free particle turns out to be infinite. 
No such problem arises in nonlinear classical field theory. For instance the 
energy of a kink is finite as it is that of  a bound state in potential theory. This 
is enough to make classical fields worthy of further study as a tool o f  element- 
ary particle physics. It is clear that in this connection the main concept and, 
perhaps, the key of the problem is the soliton. 

To summarize, the conclusions of  this paper are as follows: 
(1) The relativistic quantum mechanics of  the hydrogen atom coincides, 

up to a 4 order, with the linearization of a nonlinear theory. The linearization 
is dominated by the term X(t}~) 2 ; if [X[m 2 < 10 -4, the nonlinear corrections 
to the energy are smaller than 10or 6 and decrease with increasing n, at least for 
n =  1 ,2 ,3 .  

(2) A nonlinear theory of the Dirac field has, near the linear limit, a 
quantumlike behavior. There is a close relation between linearization and 
quantization. When we linearize we can no longer determine the norm of the 
solutions, and we are, theretore, unable to establish an energy-frequency 
relation, which near the linear limit has the form 

E = Na~ 

where N is the norm of  the field. To overcome this problem we must introduce 
the value of N as a constant. I f N  = fi, the well-known Planck relation holds. 
From the point of view of nonlinear theory this relation does not apply when 
we are far from the linear limit. 

It is most convenient to study this point without the use of  numerical 
analysis, in order to develop a mathematical theory of the linearization of 
nonlinear classical field theory. 

(3) The preceding conclusion suggests the possibility of  a dynamical deter- 
mination of the Planck constant. I f  there exist very localized solitons in the 
case of  nonlinear Dirac and Maxwell fields in interaction, a classical model of the 
electron could be attempted. The norm of these solitons would play the role 
of action quantum and ought to be equal to ~. The electron would, then, be 
considered as an extended particle, whose radius would depend on the particular 
situation considered. 

Of course this determination o f~  would only be valid for the hydrogen atom 
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or, at most,  for atomic physics. The universality of  the value of~i is far beyond 
the scope of  this work. 

(4) It is possible to construct a nonlinear classical model  o f  the hydrogen 
atom, in which the electron is represented b y  a Dirac field. It is worthwhile to 
study the possibili ty of  representing the transitions by  means o f  the theory  of  
stability o f  solutions of  nonlinear partial differential equations. I f  this turns 
out to be possible a deterministic structure would be h idden  behind the 
quantum world. The philosophical implications would be very important .  

(5) This point o f  view could be extended to any kind o f  particles, represent- 
ing them as solitary waves with different degrees o f  stability. Quantum mech- 
anics would then be the linearization of a classical field theory  o f  extended 
particles. 

Most physicists accept today  the interpretat ion of  quantum mechanics that  
was established in the twenties, after long discussions between some of  the 
most prominent  scientists of  the century. Bohr, Heisenberg, and a large majori ty 
of  physicists were in the winning side. Einstein, Schr6dinger, de Broglie and a 
few more lost the batt le .  Perhaps, the t ime has come to take up again the 
discussion, in the light o f  the surprising and unsuspected richness o f  the world 
of  nonlinear equations. 
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